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Abstract—In this paper, an efficient technique is proposed for a
mobile sensor network used to monitor a moving target in a field
with obstacles while the network lifetime is maximized. The main
sources of energy consumption of the sensors in the network are
sensing, communication, and movement. A graph is constructed
and its edges are weighted properly based on the remaining
energy of each sensor. This graph is subsequently employed to
address the lifetime maximization problem by solving a sequence
of shortest path problems, which can be solved using existing
methods. The proposed technique determines a near-optimal
relocation strategy for the sensors as well as an energy-efficient
route to transfer information from the target to destination.
This near-optimal solution is calculated in every time instant,
using the information of the previous time step. It is shown
that by choosing appropriate parameters, sensors’ locations and
the communication route from target to destination obtained by
the proposed algorithm can be arbitrarily close to the optimal
locations and route at each time instant. Simulation results
confirm the effectiveness of the proposed technique.

I. INTRODUCTION

Recently, mobile sensor networks (MSN) have received

considerable attention in the literature due to their applications

in emerging technologies such as health monitoring [1], [2],

environmental monitoring [3], [4], intrusion detection [5], [6],

surveillance [7], [8] and target tracking [9], [10]. In [9], the

problem of underwater target tracking is investigated, where it

is desired to minimize the energy consumption of the sensors.

In [10], it is aimed to activate the minimum number of sensors

in the network to track a moving target. The mobility of

sensors allows a sensor network to adaptively compensate

for variations in the environment, and therefore address the

intended application more efficiently. In particular, mobile

sensor networks can be very efficient and flexible in tracking

and monitoring moving (or otherwise changing) targets. The
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sensors are required to collaboratively work in order to route

the target information to a designated destination node.

The MSNs (and sensor networks, in general) are heavily

constrained by limitations in resources such as energy and

processing capability. Such constraints should be taken into

account in the design of efficient motion-planning algorithms

in a practical setting. In [11], a network of mobile sensors has

been used for structural health monitoring while addressing

challenges such as adaptability and resource limitations. Hu

et al. [12] developed a wireless sensor network for measuring

various bio-parameters such as ECG, EEG and EMG. Adding

the mobility feature to such networks will create an intelligent

environment that can pervasively monitor the health of elderly

patients regardless of their position in hospitals or care centers.

Many researchers have been investigating the problem of

energy minimization in MSNs. The authors in [13] propose an

approach for maintaining connectivity in a network of regular

and mobile backbone nodes. The strategy aims at minimizing

the number of backbone nodes and controlling their mobility.

A distributed control scheme is proposed in [14] to position

the aerial vehicles in such a way that the signal-link quality

among a team of ground and air vehicles is optimized. The

air vehicles position themselves such that the communication-

link quality is optimized. The ground vehicles, on the other

hand, perform a collaborative task independent of the air

vehicles. The problem of distributed tracking of a maneuvering

target using a sensor network is investigated in [15]. It is

assumed that the sensing range of the sensors is limited and

the target can only be observed by a few sensors, and it

is hidden from most of them. A message passing version

of the Kalman-Consensus Filter is then proposed to track a

maneuvering target effectively. Note that mobile sensors are

often powered by small batteries which might be difficult

to replace because of the harsh environmental conditions or

even cost due to the number and frequency of the required

replacements in a typical network. Therefore, minimizing the

energy consumption of the sensors while maintaining the

network-level objectives are essential in the design of an

efficient MSN. A technique is presented in [16] to transform

the problem of designing an energy-efficient target tracking

MSN to the popular shortest path problem. The authors in [17]

and [16] propose efficient algorithms to tackle the energy

minimization problem in a sensor network with and without

obstacles, respectively. In addition to minimizing the energy

consumption of each individual sensor, it is also important



to maximize the lifetime of the network. Note that minimum

energy consumption does not necessarily imply maximum

lifetime for the network. Several strategies are proposed in

the literature to increase the lifetime of a sensor network but

most of them do not consider the movement energy of the

sensors, and many of them are developed for static ones. For

example, in [18], the problem of energy imbalance in many-

to-one sensor networks is investigated, and a general model is

proposed for maximizing the network lifetime. An analytical

framework is presented in [19] to study coverage and lifetime

in an MSN using a two-dimensional Gaussian distribution

model. Another class of strategies for increasing the lifetime

of MSNs uses a mobile sink instead of moving all sensors.

For example, the authors in [20] plan the mobility of a sink

node by solving a mixed integer linear programming problem

in order to prolong the network lifetime. As another example,

in [21] a distributed strategy is presented to find the optimal

information flow vector in a network consisting of battery

powered static sensors and a mobile sink. In [22], the NP-hard

problem of planning the optimal trajectory of a mobile sink for

gathering data from sensors is converted to a convex problem

which is solved to maximize the lifetime of the network

(note that typically sending the collected information from

all sensors to a fixed sink is the major energy consumption

source). The authors in [23] introduce a sensor network with k
mobile sinks, each of which can travel a limited distance and

can receive data through a predetermined number of hops,

and plan the trajectory of the mobile sinks using a joint

optimization problem. A distributed algorithm is developed

in [24] to maximize the lifetime of the network for the case

when data is transfered to a mobile sink and some delay can

be tolerated in the process. A few methods have also been

provided in the literature which take the movement energy of

the sensors into consideration. For instance, the authors in [25]

propose a target tracking strategy in an MSN to increase the

lifetime of the network in an obstacle-free environment but the

results cannot be easily extended to the case of an environment

with obstacles.

Although several papers have investigated network lifetime

maximization, most of the existing results only consider

communication and/or sensing in the energy consumption

model, and the mobility of the sensors is often neglected

in the model in order to simplify the analysis [9]-[26]. In

fact, in most applications sensor movement is the dominant

source of energy consumption. To the best of the authors’

knowledge, there is no result on target monitoring in the

literature, where the movement of the sensors are considered

in the energy consumption model. Furthermore, the objective

in [16], [17] is to minimize the energy consumption of the

sensors, as noted before. Although this is closely related to the

lifetime maximization problem considered in the present work,

the two problems have important differences as elaborated

in the simulations section of the paper. In this paper, the

problem of tracking and monitoring a moving target in a

field with obstacles is investigated. It is assumed that the

main sources of energy consumption of the sensors in the

network are sensing, communication, and movement. It is

also assumed that the obstacles in the field can limit the

communication and sensing capabilities of the sensors by

blocking the channel between them. The main objective is

to develop an efficient motion strategy for the sensors such

that the network lifetime is maximized, while any possible

obstacles are avoided. To this end, an energy-efficient route is

obtained to transfer information from the target to destination

using a shortest path algorithm. The sensors move to their

new locations and the algorithm is repeated after a prescribed

time interval (which is set based on the target’s maximum

speed). The desired characteristics of the proposed strategy in

relation to the lifetime of the network are discussed in detail.

The main contribution of the present work with respect to

the existing literature is that it investigates the problem in the

presence of obstacles, and that it uses an accurate model for

energy consumption. These issues add significant complexity

to problem analysis. Preliminary results of this work have been

published in [25], [27].

The organization of the remainder of the paper is as follows.

In Section II, a modified form of the conventional Voronoi

diagram reflecting the energy consumption of the sensors is

introduced. The problem statement is provided in Section III,

along with some important assumptions and definitions. In

Section IV, an energy-efficient monitoring strategy for mobile

sensors in the presence of obstacles is presented, as the main

contribution of this work. Simulation results are provided in

Section V to demonstrate the effectiveness of the proposed

strategy. Finally, some concluding remarks are made in Sec-

tion VI.

II. ENERGY-BASED VORONOI DIAGRAM

Consider a set of n distinct weighted nodes denoted by S =
{(S1, e1), (S2, e2), . . . , (Sn, en)} in a 2D plane, where ei > 0
is the weighting factor associated with the i-th node Si, for

any i ∈ n := {1, 2, . . . , n}. Let a distance function between an

arbitrary point Q in the above plane and the weighted node

(Si, ei) be given; denote this function by f(Si, ei, Q). The

extended Voronoi diagram is defined as a partitioning of the

plane into n regions in such a way that the nearest node (in

terms of the distance function given above) to any point inside

a region is the node assigned to that region. The mathematical

description of each region obtained by the above partitioning

is as follows:

Πi = {Q ∈ R2|f(Si, ei, Q) ≤ f(Sj , ej , Q), ∀j ∈ n\{i}}
(1)

Note that for certain functions f(.) and weighting factors ei,
some regions may be empty (contain no points).

Now, consider n sensors in a field, and let them be rep-

resented by the nodes S1, S2, . . . , Sn described above. The

weight of the node Si in (1) is set to be the remaining energy

of that sensor (hence, it varies with time). Furthermore, let

f(Si, ei, Q) be equal to the difference between the initial

energy of the i-th sensor, denoted by Ei,0, and the remaining

energy of that sensor after traveling to point Q. Without loss

of generality, assume that the initial energy of every sensor is

the same, and denote it by E0. Assume also that the sensor

movement energy is linearly proportional to the travel distance.



Then, one can write:

f(Si, ei, Q) = (Ei,0 − ei) + es + βd(Si, Q) (2)

where β is a known constant which is related to the mechanical

characteristics of the sensor. In fact, the energy consumption

of a motion actuator (e.g., a motor) is, approximately, linearly

related to the moving distance. β reflects this relation, and its

value depends on the sensor and its moving mechanism. Also,

es is the energy required to overcome the static friction (when

the sensor starts to move) which is assumed to be the same

for all sensors. Furthermore, d(Si, Q) is the Euclidean distance

between Si and Q. For the particular choice of the distance

function and weighting factor in this paper, the extended

Voronoi diagram will be referred to as the energy-based

Voronoi (E-Voronoi) diagram. Some important characteristics

of the E-Voronoi diagram are described in the sequel.

Consider sensors 1 and 2 with the remaining energies e1
and e2, respectively. If f(S1, e1, Q) = f(S2, e2, Q), then:

(E0 − e1) + es + βd(S1, Q) = (E0 − e2) + es + βd(S2, Q)

⇒ e1 − es − βd(S1, Q) = e2 − es − βd(S2, Q)

⇒ d(S1, Q)− d(S2, Q) =
e1 − e2

β
= const. (3)

Therefore, any point Q for which f(S1, e1, Q) = f(S2, e2, Q)
lies on one branch of a hyperbola (in the special case when

e1 = e2, this branch turns out to be the perpendicular bisector

of the segment S1S2) [27]. To construct the E-Voronoi region

associated with a node in the network, first the branches of the

above-mentioned hyperbolae of that node and the other nodes

are drawn. The smallest region containing a node is, in fact,

the region assigned to that node. Fig. 1 shows the E-Voronoi

diagram for 2 sensors with different amounts of energy.

Fig. 1: An example of the energy-based Voronoi diagram for 2 sensors with
different amounts of energy.

Now, consider a 2D field with obstacles. When an obstacle

is located on the line connecting a sensor to its candidate

location, then the sensor cannot move on a straight line, and,

in addition, its sensing and communication capabilities are

attenuated. In particular, in this work it is assumed that the

obstacles completely block the communication and sensing

range of the sensors [28]. Fig. 2 shows an example where the

target cannot be detected by the sensor because of the way

the obstacle is positioned. Since the obstacle is blocking the

line-of-sight between the points S and Q, the sensor can, for

instance, move along the segments SA,AQ, which provide

the shortest distance in this case. In this work, the shortest

distance is used instead of conventional Euclidean distance

d(S,Q) to calculate the movement energy for the sensor in

the formulation of the E-Voronoi diagram. Furthermore, as

Fig. 3 shows, two sensors located on opposite sides of an

obstacle cannot communicate even if they are distanced within

each others normal communication range. Fig. 4 depicts the E-

Voronoi diagram in the presence of obstacles for two sensors,

which will hereafter be referred to as the obstructed energy-

based Voronoi (OE-Voronoi) diagram. As it can be observed

from this figure, the boundaries of the OE-Voronoi regions in

this case are not necessarily branches of hyperbolae, and their

shapes are highly dependent on the configuration of obstacles.

It is important to note that, when there are obstacles in the

field and/or the distances between nodes are not Euclidean,

the computation of the energy-based Voronoi diagram would

be much more complex than that of the conventional Voronoi

diagram [29], [30].

Fig. 2: An example of a sensor near an obstacle with blocked sensing range.

Fig. 3: An example of a sensor near an obstacle with blocked
communication range.

Fig. 4: An example of the obstructed energy-based Voronoi diagram for two
sensors with different amounts of energy.

III. PROBLEM STATEMENT

Consider a group of n mobile sensors S1, . . . , Sn, a moving

target, and a fixed access point (also referred to as the



destination point). The main objective of this work is defined

below.

Problem Definition: It is desired to develop an algorithm

to: (i) monitor the target such that it remains in the sensing

range of at least one sensor at all times; (ii) transmit the

information from the target to destination point, and (iii)

maximize the lifetime of the network. More precisely, the

objective is to compute the new locations of sensors at

each time instant such that a set of prescribed specifications

are met. These specifications include end-to-end connectivity

preservation from the target to a fixed destination (through the

sensing and communication links), while the durability of the

sensors is maximized.

In order to develop an energy-efficient sensor deployment

strategy, it is required to adopt a proper model for the energy

consumption of sensors. In general, the energy consumption

of mobile sensors is mainly due to communication, sensing,

and movement. Although minimizing energy consumption is

of great importance in an MSN, in many applications it is more

desirable to maximize the lifetime of the sensors instead, in

order to increase the durability of the overall network (note that

energy minimization and lifetime maximization are closely-

related but not identical problems). An effective strategy to

maximize the lifetime of a sensor network is that sensors with

smaller residual energy compared to other sensors consume

less power. To this end, sensors must operate in a collaborative

fashion in order to determine the best location and routing path

for each of them to transmit the information from the target

to destination. Since the analytical solution of this problem

is complicated in general, as an efficient alternative approach,

the sensing field is divided into a grid first. Let the grid cells

be sufficiently small such that the sensors and target can be

assumed to be located on some nodes of the grid at every time

instant. Construct a directed graph (digraph) whose vertices

are the grid nodes, and let the edges be weighted according

to the above-mentioned three sources of energy consumption

as described later. This digraph will hereafter be called the

energy consumption digraph.

Definition 1. Network lifetime is the time it takes for the

first sensor to completely deplete its energy. It is to be noted

that different definitions are given for network lifetime in the

literature and the one adopted here is consistent with [31], [32]

and [33].

Notation 1. Throughout this paper, the nearest sensor to node

Q in terms of energy consumption, referred to as EC-nearest

sensor to node Q, is denoted by S1
Q and characterized by:

f(S1
Q, eS1

Q
, Q) ≤ f(Sj , ej , Q), S1

Q ∈ S, Sj ∈ S\{S1
Q} (4)

where eS1
Q

is the remaining energy of the sensor S1
Q. Also,

the i-th nearest sensor to node Q (again in terms of energy

consumption) is referred to as the i-th EC-nearest sensor to

Q, and is denoted by Si
Q. This can be formulated as:

f(Si
Q, eSi

Q
, Q) ≤ f(Sj , ej , Q), Si

Q ∈ S\
i−1
⋃

h=1

{Sh
Q},

Sj ∈ S\

i
⋃

h=1

{Sh
Q}

(5)

where eSi
Q

is the remaining energy of the sensor Si
Q. Further-

more, the residual energy of the i-th EC-nearest sensor to Q,

after traveling to this point will be denoted by Ei
r,Q.

Assumption 1. It is assumed that the sensor assigned to sense

the target at any time instant is the EC-nearest sensor to its

location, which is hereafter called the monitoring sensor at that

time instant. Note that this sensor is not necessarily fixed (i.e.,

it may change from time to time). A subset of other sensors

can be employed accordingly to create an information route

from the target to destination.

The most important parameters which need to be taken

into consideration for selecting the monitoring sensor are the

residual energy of the sensors and the distance between the

sensors and the target. In the definition of the EC-nearest

sensor to the target both of these parameters are considered,

and this notion is used to select the monitoring sensor such that

the reliability and durability of target monitoring is improved

(note that a sensor near the target which has sufficient amount

of energy would be a perfect choice).

Denote the monitoring sensor by ST (note that ST ∈
{S1, S2, . . . , Sn} at any time instant) and the destination point

by PD. Denote also the target node and the E/OE-Voronoi

region containing it by PT and ΠT , respectively.

Assumption 2. It is assumed that the target is at a reachable

distance from the destination point through other sensors at

all times, i.e. d(PT , PD) ≤ nRc + Rs, where d(., .) denotes

the shortest distance between two points. Also, n, Rc and Rs

denote the number of sensors, their communication range and

sensing range, respectively.

Note that the condition in Assumption 2 is intuitive in the

sense that if the distance between the target and destination

point exceeds nRc + Rs, then transferring information from

the target to destination is impossible and meaningless.

Definition 2. A sensing node is a node belonging to ΠT , from

where a sensor can sense the target. Furthermore, any node of

a given path P excluding the target and destination is referred

to as a path node of P .

IV. MAIN RESULTS

Consider a 2D field with some obstacles and a group of

n sensors. Partition the field into the OE-Voronoi regions,

and denote the j-th region by Πj , for any j ∈ n. A weight-

assignment algorithm is provided in the sequel to find some

candidate locations for the sensors in order to maximize the

network lifetime. Construct a digraph where an edge from PT

to a node Pj exists if and only if Pj is a sensing node; the



weight of this edge is considered to be 0. Fig. 5 demonstrates

the edges originated from PT for an E-Voronoi diagram.

Furthermore, there is an edge from node Pi (Pi 6= PT ) to

another node Pj in this digraph if and only if a sensor located

at Pi could transmit the information to a sensor located at Pj .

Note that in the case where an obstacle is blocking the line-of-

sight between Pi and Pj , there would be no edge between their

corresponding vertices in the digraph. The following procedure

is used for the weight assignment of the edges in the digraph.

Fig. 5: Edges originating from the target to its adjacent sensing nodes in an
energy-based Voronoi diagram.

Weight-Assignment Strategy

Case 1) Assume Pi and Pj are in different regions OR Pj

is the destination node. Then:

i) If the target and Pi are in the same region AND Pi is

not a sensing node, then the weight of the edge from Pi

to Pj is given by:

w(i, j) =

[

E0 − E2
r,Pi

+ ωc(Pi, Pj)

E0

]k

where ωc(Pi, Pj) is the communication cost from the

node Pi to Pj , E2
r,Pi

is the residual energy of the second

EC-nearest sensor to Pi after traveling to this point (see

Notation 1), and k is a constant which will be introduced

later.

ii) If the target and Pi are in different regions, then:

w(i, j) =

[

E0 − E1
r,Pi

+ ωc(Pi, Pj)

E0

]k

where E1
r,Pi

is the residual energy of the EC-nearest

sensor to Pi after traveling to this point (see Notation 1).

iii) If Pi is a sensing node, then:

w(i, j) =

[

E0 − E1
r,Pi

+ ωc(Pi, Pj) + ωs(PT , Pi)

E0

]k

where ωs(PT , Pi) is the required sensing energy for a

sensor at Pi to sense the target.

Case 2) Consider now the case where Pi and Pj are in the

same region, AND Pj is not the destination node.

i) If the target and Pi are in the same region AND Pi is

not a sensing node, then:

w(i, j) =

[

E0 − E2
r,Pi

+ ωc(Pi, Pj)

E0

]k

ii) If the target and Pi are in different regions, then:

w(i, j) = max



min





[

E0 − E1
r,Pi

+ ωc(Pi, Pj)

E0

]k

+

[

E0 − E2
r,Pj

+ ωmin

E0

]k

,

[

E0 − E1
r,Pj

+ ωc(Pi, Pj)

E0

]k

+

[

E0 − E2
r,Pi

+ ωmin

E0

]k




−

[

E0 − E1
r,Pj

+ ωmax

E0

]k

,

[

E0 − E1
r,Pi

+ ωc(Pi, Pj)

E0

]k




where ωmin is the minimum of energy required by a

sensor on one grid node to communicate with the nearest

node to it in the grid, and ωmax is the maximum of energy

required by a sensor on one grid node to communicate

with the farthest node in its communication range.

iii) If Pi is a sensing node, then:

w(i, j) =

[

E0 − E1
r,Pi

+ ωc(Pi, Pj) + ωs(PT , Pi)

E0

]k

Fig. 6 illustrates sample edges for each of the above cases for

the sensor network of Fig. 5. In the edge AB, node A is not

a sensing node while it is in the same region as the target

but it is not in the same region as Pj . Thus, the edge AB
is an example of case 1(i). On the other hand, CD and EF
satisfy the conditions of case 1(ii) because EF has vertices in

different regions while E is not in the target’s region, and D is

the destination node. The edge GH represents case 1(iii) as

G is a sensing node. Moreover, the three edges IJ , KL and

MN are examples of cases 2(i), 2(ii) and 2(iii), respectively.

Fig. 6: Different types of edges for a field with three sensors.

Given an energy consumption digraph, it is desired now

to find the shortest path connecting the target to destination,



subject to the constraint that the number of nodes in the

path is less than or equal to the number of sensors. This

path provides an information route which is optimal for

lifetime maximization under some conditions as discussed

later. Algorithm 1 summarizes the proposed technique.

Algorithm 1

1) Divide the field to rectangular grid cells.

2) Partition the field using the obstructed energy-based

Voronoi diagram.

3) Construct a digraph with the grid nodes as its vertices.

4) Assign proper weights to the edges of the constructed

digraph using the proposed weighting strategy.

5) Find the shortest path connecting the target to the desti-

nation node.

6) Move the sensors to the nodes of the shortest path for

establishing the information link.

7) Repeat the algorithm from step 2 after relocating the

sensors.

Remark 1. One can use an efficient routing algorithm (such

as Dijkstra) to find the shortest path in an energy consumption

digraph. If the number of nodes in the shortest path turns out

to be greater than n, then one can switch to a constrained

shortest path algorithm, which is typically slower than its

unconstrained counterparts [25].

Note that although finding the shortest path subject to some

constraints in a graph is, in general, an NP-hard problem [34],

it can be solved in polynomial time in special cases, e.g., when

the number of nodes on the path does not exceed some number

n [35].

Remark 2. Note that the proposed algorithm is mainly depen-

dent on the residual energy of sensors not their initial energy.

Hence, the assumption that all sensors have the same initial

energy, used in Section II, is only for simplicity of analysis

(more precisely, it simplifies some of the terms used in in this

work). If the initial energies are not the same, one can still

use the simplified analysis by choosing a value that is greater

than all initial energies and use it in the paper.

Remark 3. The constant parameter β in (3) has significant

impact on the shape of the regions in the energy-based Voronoi

diagram. Since in the weight-assignment strategy (which is a

very important part of the proposed algorithm) the regions

shapes and configuration play a key role, hence β is a very

important parameter in the proposed algorithm.

Definition 3. A path P with at most n nodes which connects

the target to destination is called a feasible path. The sum

of the weights of the directed edges of a feasible path P is

denoted by W (P ), and is referred to as the path weight of P .

Definition 4. Throughout this paper, the percentage of the total

energy consumption of a sensor is sometimes referred to as

the consumed energy of that sensor. In other words, consumed

energy is equal to the ratio of the difference between the initial

energy of a sensor and its residual energy, to its initial energy.

Definition 5. Consider a network of n mobile sensors

S1, S2, . . . , Sn, and a feasible path P with m nodes, denoted

by the ordered set (PT , P1, P2, ..., Pm, PD). Assume the EC-

nearest sensor (among n sensors) to the target is assigned

to P1. For the rest of the sensors and the path nodes, there

are
(

n−1
m−1

)

(combination of m − 1 out of n − 1) possible

sensor assignments, which together with the sensor assigned

to P1 can be employed to transfer the information from PT

to PD in this case. Let the assignment of the distinct sensors

Si1 , Si2 , . . . , Sim to the nodes P1, P2, . . . , Pm, respectively, be

denoted by the pair (P, SP ), where SP represents the ordered

set (Si1 , Si2 , . . . , Sim). Furthermore, denote by (P, S∗
P ) the

sensor assignment for which the energy consumption of the

sensor with the smallest residual energy (after relocating

the sensors and transmitting information from the target to

destination) is minimum, and call it the optimal assignment.

Note that the optimal sensor assignment is not unique. Also,

it is important to note that the optimal sensor assignment

can change each time the sensors are relocated. However, to

simplify notation, the time-dependence has not been explicitly

shown in the above representation.

Definition 6. Consider the optimal assignment (P, S∗
P ) for

a mobile sensor network. The k-th power of the consumed

energy of the sensor Sij after traveling to node Pj and

exchanging information will be referred to as the node cost

of Pj in path P , and will hereafter be denoted by CP (Pj).
Furthermore, the sum of the node costs of all the path nodes

of P will be called path cost of P , and will be denoted by

C(P ).

Theorem 1. For any feasible path P in an energy consumption

digraph, the relation W (P ) ≤ C(P ) holds.

Proof: Assume the feasible path P =
(PT , P1, P2, . . . , Pm, PD) passes through regions

Π1,Π2, . . . ,Πh, and the path has ni nodes in region

Πi, i = 1, 2, . . . , h. Note that, Πi and Πj can be the same

regions, ∀1 ≤ i, j ≤ h, j 6= i+1. Partition P into h sub-paths

as follows:

P 1 = (PT , P
1
1 , P

1
2 , ..., P

1
n1
, P 2

1 )
P 2 = (P 2

1 , P
2
2 , ..., P

2
n2
, P 3

1 )
...

Ph = (Ph
1 , P

h
2 , ..., P

h
nh

, PD)

Now, it suffices to show that for any sub-path, the path

weight is less than or equal to the corresponding path cost.

If Πa contains exactly one node for any a = 1, 2, . . . , h,

then the sub-path P a contains only the edge (P a
1 , P

a+1
1 )

(note that Ph+1
1 is, in fact, PD). The weight assigned to this

edge in the digraph is

[

E0−E1

r,Pa
1
+ωc(P

a
1 ,P

a+1

1
)

E0

]k

for a 6= 1

and

[

E0−E1

r,Pa
1
+ωc(P

a
1 ,P

a+1

1
)+ωs(PT ,Pa

1 )

E0

]k

for a = 1, which

correspond to the assignment of the EC-nearest sensor to



the node P a
1 . It is important to note that in both cases the

assigned weight is equal to the minimum combined cost of

movement, communication, and sensing of a sensor after

moving to P a
1 . If the EC-nearest sensor to P a

1 is also the

EC-nearest sensor to some other nodes in the path, the weight

is less than the cost.

On the other hand, if Πa contains more than one node,

then there will be two possibilities as follows:

Case 1: a 6= 1. In this case, the weight of every edge

from Pi to Pj is either

min





[

E0 − E1
r,Pi

+ ωc(i, j)

E0

]k

+

[

E0 − E2
r,Pj

+ ωmin

E0

]k

,

[

E0 − E1
r,Pj

+ ωc(i, j)

E0

]k

+

[

E0 − E2
r,Pi

+ ωmin

E0

]k


−

[

E0 − E1
r,Pj

+ ωmax

E0

]k

or
[

E0 − E1
r,Pi

+ ωc(i, j)

E0

]k

Let the former be called type A edge and the latter type B

edge. Divide the sub-path P a to l sub2-paths as follows:

P a,1 = P a,1
1 , P a,1

2 , . . . , P a,1
m1

, P a,2
1

P a,2 = P a,2
1 , P a,2

2 , . . . , P a,2
m2

, P a,3
1

...

P a,l = P a,l
1 , P a,l

2 , . . . , P a,l
ml

, P a+1,1
1

such that the last edge in any sub2-path P a,b, b = 1, 2, . . . , l,
is a type B edge, and the rest of the edges in that sub2-path

are type A. Obviously, in any region Πa there is at least one

sub-path, and every sub-path contains at least one type B

edge.

Assume now that the EC-nearest sensor to all nodes of Πa

is assigned to one of the nodes of a sub2-path P a,b, 1 ≤ b ≤ l.
In this case, the weight assigned to P a,b is:

W b(a) =

mb−1
∑

q=1

[

min
(

g(1, P a,b
q , P a,b

q+1)

+gmin(2, P
a,b
q+1), g(1, P

a,b
q+1, P

a,b
q )+gmin(2, P

a,b
q )

)

− gmax(1, P
a,b
q+1)

]

+ g(1, P a,b
mb

, P a,b+1
1 )

(6)

where g(u, Pi, Pj) =
[

E0−Eu
r,Pi

+ωc(Pi,Pj)

E0

]k

, gmin(u, Pi) =
[

E0−Eu
r,Pi

+ωmin

E0

]k

, and gmax(u, Pi) =
[

E0−Eu
r,Pi

+ωmax

E0

]k

.

From the properties of the OE-Voronoi diagram, the EC-

nearest sensor to all nodes of the sub2-paths P a,b is the same,

but the sensor can move to only one node. Thus, the cost of

moving mb sensors to mb nodes of the sub2-paths, denoted

by Cb(a), satisfies the following relation:

Cb(a) ≥ g(1, P a,b
j , P a,b

j+1) +

mb
∑

q=1,q 6=j

g(2, P a,b
q , P a,b

q+1),

∀j ∈ {1, 2, ...,mb}

(7)

It is straightforward now to derive the following relations:

W b
a,1 =

j−1
∑

q=1

g(1, P a,b
q+1, P

a,b
q+2)

+ gmin(2, P
a,b
q )− g(1, P a,b

q+1, P
a,b
q+2)

≥

j−1
∑

q=1

min
(

g(1, P a,b
q , P a,b

q+1)

+ gmin(2, P
a,b
q+1), g(1, P

a,b
q+1, P

a,b
q+2) + gmin(2, P

a,b
q )

)

− g(1, P a,b
q+1, P

a,b
q+2)

(8)

W b
a,2 =





mb−1
∑

q=j

g(1, P a,b
q , P a,b

q+1) + gmin(2, P
a,b
q+1)

− g(1, P a,b
q+1, P

a,b
q+2)



+ g(1, P a,b
mb

, P a,b+1
1 )

≥





mb−1
∑

q=j

min
(

g(1, P a,b
q , P a,b

q+1)

+ gmin(2, P
a,b
q+1), g(1, P

a,b
q+1, P

a,b
q+2) + gmin(2, P

a,b
q )

)

− g(1, P a,b
q+1, P

a,b
q+2)



+ g(1, P a,b
mb

, P a,b+1
1 )

(9)

By expanding the right side of the above relations and simpli-

fying them, it is concluded that:

W b
a,1 +W b

a,2 = g(1, P a,b
j , P a,b

j+1) +

mb
∑

q=1,q 6=j

g(2, P a,b
q , P a,b

q+1)

≥

mb−1
∑

q=1

[

min
(

g(1, P a,b
q , P a,b

q+1)

+ gmin(2, P
a,b
q+1), g(1, P

a,b
q+1, P

a,b
q+2)

+ gmin(2, P
a,b
q )

)

− g(1, P a,b
q+1, P

a,b
q+2)

]

+ g(1, P a,b
mb

, P a,b+1
1 )

(10)

Since g(u, Pi, Pj) ≤ gmax(u, Pi) for any integer u and any

points Pi and Pj , the following relation is obtained:



mb−1
∑

q =1

[

min
(

g(1, P a,b
q , P a,b

q+1)

+ gmin(2, P
a,b
q+1), g(1, P

a,b
q+1, P

a,b
q+2) + gmin(2, P

a,b
q )

)

− g(1, P a,b
q+1, P

a,b
q+2)

]

+ g(1, P a,b
mb

, P a,b+1
1 ) ≥

mb−1
∑

q=1

[

min
(

g(1, P a,b
q , P a,b

q+1)

+ gmin(2, P
a,b
q+1), g(1, P

a,b
q+1, P

a,b
q+2) + gmin(2, P

a,b
q )

)

− gmax(1, P
a,b
q+1)

]

+ g(1, P a,b
mb

, P a,b+1
1 )

(11)

Note that the right side of (11) is, in fact, equal to W b(a).
From (7), (10) and (11), one arrives at:

Cb(a) ≥ W b(a)

Now, for the other sub2-path P a,c, c = 1, 2, . . . , l, c 6= b, one

can write:

Cc(a) ≥

mc
∑

q=1

g(2, P a,c
q , P a,c

q+1)

≥ g(1, P a,c
j , P a,c

j+1) +

mc
∑

q=1,q 6=j

g(2, P a,c
q , P a,c

q+1),

∀j; j ∈ {1, 2, ...,mc}

Using a similar approach:

Cc(a) ≥ W c(a)

Recall that the weight and cost of a sub-path in a region Πa

are the sum of the weights and costs of the sub2-paths of that

region. Thus, for region Πa:

C(a) ≥ W (a), a = 2, 3, . . . , h

where C(a) and W (a) are the path cost and path weight of

sub-path P a, respectively.

Case 2: a = 1 (the region contains the target). In this case,

the EC-nearest sensor to the nodes of this region is assigned

to detect the target, and hence, cannot be assigned to another

node. Thus, the cost of the sub-path P 1 satisfies the following

relation:

C(1) ≥ gs(1, P
1
1 , P

1
2 ) +

n1
∑

q=2

g(2, P 1
q , P

1
q+1)

where gs(u, Pi, Pj) =
[

E0−Eu
r,Pi

+ωc(Pi,Pj)+ωs(PT ,Pi)

E0

]k

. On

the other hand, the proposed weight-assignment strategy

yields:

W (1) = gs(1, P
1
1 , P

1
2 ) +

n1
∑

q=2

g(2, P 1
q , P

1
q+1)

and hence:

C(1) ≥ W (1)

This completes the proof.

Definition 7. A good path is defined as a feasible path P with

the following properties:

i) It has at most two nodes in the region ΠT and at most one

node in other regions.

ii) If the region ΠT contains exactly two nodes of the path,

say Pi and Pj , creating a directed edge from Pi to Pj , then

the path P does not pass through the region containing the

second EC-nearest sensor to Pj .

Moreover, a feasible path P with at most one node in each

OE-Voronoi region is referred to as a perfect path. It is obvious

that any perfect path is a good path as well.

Definition 8. Consider a network of n mobile sensors and a

feasible path P with m nodes, and let the optimal assignment

(P, S∗
P ) be deployed. Let also the maximum energy consump-

tion (from the initial time of the network operation) among all

sensors once they move to their assigned nodes and transmit

information from the target to destination be referred to as the

max-min energy consumption w.r.t. the path P , and be denoted

by E(P, S∗
P ).

Definition 9. Among all feasible paths, the one w.r.t. which

the max-min energy consumption is minimum will be referred

to as the optimal path. Let this path be denoted by P ∗.

Theorem 2. For any feasible good path, the path weight and

path cost are equal.

Proof: Consider the following two cases:

Case 1: Region Πa, a = 1, 2, . . . , h contains only one

node. In this case, it is important to note that in the optimal

assignment of a good path, the EC-nearest sensor to node Pi

in region Πa is assigned to that node. On the other hand,

the proposed weight-assignment strategy assigns the weight

g(1, Pi, Pi+1) to the edge PiPi+1. Thus, the path cost and

path weight for the edge in region Πa are equal.

Case 2: Region ΠT contains the sensing node Pi as well as

the node Pi+1. Since the EC-nearest sensor is always assigned

to sense the target, in this case the optimal assignment will

be that of the EC-nearest sensor to Pi and the second EC-

nearest sensor to Pi+1. Note that, from the definition of a good

path, the second EC-nearest sensor to Pi+1 is not assigned to

any other node. Moreover, the weights of the edges PiPi+1

and Pi+1Pi+2 are gs(1, Pi, Pi+1) and g(2, Pi+1, Pi+2), re-

spectively. Therefore, the path cost and path weight are equal

for this case as well.

From the above discussions (which are valid for any region),

it is concluded that the path cost and path weight of a good

path are equal.

Remark 4. Since any perfect path is also a good path, the

result of Theorem 2 holds for any perfect path as well.

Definition 10. A feasible path P is said to be θ-optimal if

the difference between E(P, S∗
P ) and E(P ∗, S∗

P∗) is at most

equal to θ, i.e., E(P, S∗
P )− E(P ∗, S∗

P∗) ≤ θ.

Lemma 1. For any positive real numbers n, x, θ, where x, θ ≤



1, if k > ln(n)
ln(1+θ) then

(x+ θ)k > nxk

Proof: The inequality k > ln(n)
ln(1+θ) yields

(1 + θ)k > n (12)

Since x ≤ 1, thus

(1 +
θ

x
)k ≥ (1 + θ)k (13)

It results from (12) and (13) that (1+ θ
x
)k > n, or equivalently

(x+ θ)k > nxk.

Theorem 3. Choose an arbitrary constant k > ln(n)
ln(1+θ) and

apply the proposed weight-assignment strategy. If the shortest

path P̄ in the energy consumption digraph is a good path,

then it is θ-optimal.

Proof: Consider the shortest path P̄ with the correspond-

ing optimal assignment, and let the sensor that consumes the

minimum energy E(P̄ , S∗
P̄
) be denoted by S̄1. The following

two cases are investigated:

Case 1: S̄1 is not assigned to any node of P̄ . Consider the

optimal path P ∗ and the corresponding optimal assignment

S∗
P∗ . If S̄1 is not assigned to any node of the optimal path P ∗

either, then E(P ∗, S∗
P∗) = E(P̄ , S∗

P̄
). If, on the other hand,

S̄1 is assigned to one of the nodes of the optimal path, then its

energy consumption is greater than E(P̄ , S∗
P̄
). Note that the

energy consumption of S̄1 is less than or equal to E(P ∗, S∗
P∗),

which implies that E(P̄ , S∗
P̄
) ≤ E(P ∗, S∗

P∗). By definition,

this means that P̄ is the optimal path. The proof is complete

now on noting that any optimal path is θ-optimal as well.

Case 2: S̄1 is assigned to a node of P̄ . In this case, if P̄ is

not a θ-optimal path, then:

E(P̄ , S∗
P̄
) > E(P ∗, S∗

P∗) + θ ⇒
[

E(P̄ , S∗
P̄
)
]k

> [E(P ∗, S∗
P∗) + θ]

k
(14)

Also, according to Lemma 1:

[E(P ∗, S∗
P∗) + θ]

k
≥ n [E(P ∗, S∗

P∗)]
k

(15)

From the definition of path cost and max-min energy con-

sumption and on noting that there are at most n sensors in

any feasible path, one arrives at:

C(P̄ ) ≥
[

E(P̄ , S∗
P̄
)
]k

(16)

n [E(P ∗, S∗
P∗)]

k
≥ C(P ∗) (17)

Relations (14), (15), (16) and (17) yield:

C(P̄ ) > C(P ∗) (18)

On the other hand, from Theorem 1:

C(P ∗) ≥ W (P ∗) (19)

Also, since P̄ is a good path, according to Theorem 2:

C(P̄ ) = W (P̄ ) (20)

From (18), (19) and (20), it is concluded that W (P̄ ) >
W (P ∗), which is in contradiction with the fact that P̄ is the

shortest path. Therefore, P̄ is a θ-optimal path.

Corollary 1. Choose k > ln(n)
ln(1+θ) ; if the shortest path P̄ is a

perfect path, then it is θ-optimal too.

Proof: The proof follows immediately from Theorem 3,

on noting that any perfect path is a good path as well.

Remark 5. An important (and novel) part of the proposed

algorithm is the weight assignment procedure in the energy

digraph for simulating the energy consumption of sensors. This

is carried out in such a way that although there is no guarantee

that the shortest path between the target and destination is a

good path, most of the time it is (as verified by simulations).

It can be shown that in some cases the shortest path is

almost always a good path (i.e., only in some pathological

cases the two paths would not be the same). For example,

when the energy consumption of sensors due to movement

is sufficiently greater than that due to communication, and

also the communication ranges of sensors are relatively large

such that they can communicate to each other with no need to

change their positions, the shortest path would almost always

be a good path (note that these are reasonable assumptions in

most practical cases).

Remark 6. It is to be noted that the optimality of the proposed

solution depends on θ. Although theoretically there is no limit

on the value of k, and a choice of large k will result in a small

θ, a large k could cause numerical problems. More precisely,

for a large value of k, the weight of the directed edges in

the energy digraph might be truncated to zero, and as a result

finding the shortest path between the target and destination

(θ-optimal path) would be meaningless. Therefore, although

theoretically there is no limit on the value of k, there is a

tradeoff between the optimality and computational limitation

which needs to be taken into account when choosing this

parameter.

It is important to note that the proposed algorithm is

centralized, and all the processing is performed in a central

unit in the destination point. Also, note that the network

connectivity is not necessary for performing the proposed

algorithm. The only requirement is that the target should be at

a reachable distance from the destination point through other

sensors at all times (see Assumption 2). This condition is far

less restrictive than the network connectivity condition which

is often required in different sensor network applications.

To perform the proposed algorithm, each sensor needs the

information about the position of the target and other sensors,

as well as their residual energies. Sensors used in an MSN are

typically small, and have limited communication and sensing

capabilities. Due to these limitations, it is possible that the

communication graph of the network will be disconnected at

certain time intervals, and consequently, some sensors will

not have information about the target and other sensors (note

that this information is required for the implementation of the

algorithm). These types of sensors are typically not equipped

with powerful processing modules. Note that the destination



node (which acts as the central unit) does not have access to

the above-mentioned information directly, and this information

should be transmitted to the destination point through a subset

of mobile sensors. Note also that usually the destination node

has a more powerful processor and battery, as well as a

strong transmitter capable of sending information about the

newly calculated locations of sensors and the optimal route

to the entire network. Assume at time ti the destination

node has information about the target and all sensors (and

subsequently all sensors also have this information). At time

interval [ti, ti + ∆T ] positions of the target and the sensors

collaborating in target monitoring (as well as their residual

energies) change. Since a unidirectional multihop commu-

nication link is available from target to destination by the

collaborating sensors, hence information about the target and

these sensors can be transferred to the destination. On the other

hand, the position and residual energy of any sensor that is not

part of the link from the target to destination does not change

in the above time interval, and hence the destination node still

has this information. As a result, the destination node has all

the required information at time ti+1 and sends them to all

sensors.

Remark 7. Note that with a finer grid (higher resolution) the

sensors can be placed closer to the optimal locations at the

expense of higher computational complexity. In addition, the

size of the time steps is lower-limited by the computational

power of the destination node.

In terms of complexity, the most demanding parts of the

proposed method are weight assignment and shortest path

determination. Consider a field of length L and width W ,

and let the distance between each pair of the neighboring

grid nodes be δ. A decision should be made for every pair

of nodes to classify the corresponding edge in the weight

assignment part of the algorithm. Therefore, the complexity of

the algorithm in this part is of order O(1/δ4). However, note

that from the implementation point of view, several methods

can be used to decrease the execution time considerably. For

example, assume that the communication range of the sensors

is Rc. In this case, for each node, only the nodes within a

neighborhood of radius Rc need to be checked (for a simple

implementation, this can be a 2Rc × 2Rc square centered at

that particular node). Since Rc/δ is typically smaller than L/δ
or W/δ, this is an improvement in terms of computational

complexity. Also, this part of the algorithm can be executed

in parallel for all sensors, which, again, improves the execution

time.

On the other hand, the complexity of the shortest path

algorithm is of order O(E + V logV ) [36], where E and

V are the number of edges and vertices of the energy di-

graph, respectively. Following a discussion similar to the one

provided in the previous paragraph, the complexity of the

shortest path algorithm is approximately O(1/δ4). Therefore,

the overall complexity of the algorithm is approximately

O(1/δ4). Note that the construction of the digraph and finding

the shortest path, which are the most time consuming parts of

the algorithm, do not depend on the number of sensors. In fact,

the effect of the number of sensors on the complexity of the

algorithm is negligible compared to the procedures mentioned

above. Hence, the algorithm is scalable with respect to the

number of sensors. However, in terms of the size of the field

and fineness of the grid, one should take the above complexity

order into account.

The length of time steps, on the other hand, highly depends

on the processing power of the central unit in the destination

node as well as the velocity of the target. In fact, one can

reduce the time step as long as the central unit is computation-

ally powerful enough to calculate the candidate locations and

information route in the time interval between the iterations.

Also, the time interval can be increased as long as the target

does not go out of the sensing range (see equation 26).

Remark 8. It is important to note that, there are methods

which can be used to reduce the sensing and communication

requirements (e.g., using event-triggered and self-triggered

techniques) in order to further prolong the network lifetime.

In the sequel, the approach in [37] is borrowed to investigate

the real-time implementation of the proposed algorithm, and

address some important practical issues. Let the algorithm be

executed at the time instants t0, t1 := t0+∆T , t2 := t0+2∆T ,

. . ., where ∆T is the time interval required to complete the

corresponding computations, relocate the sensors, and obtain

a near-optimal route from the target to destination.

Real-time implementation of the algorithm requires infor-

mation about the residual energies of all sensors, as well as

the location of the target and all sensors be shared between

the destination point and sensors. Three execution cycles are

considered in [tj , tj+1] (j = 0, 1, 2, . . .) as follows:

i) [tj , tj + δt1]: In this cycle, the residual energies and

positions of sensors cooperating in monitoring the target and

transferring its information to the destination node are also

sent to this node. Note also that information of sensors which

are not cooperating remains unchanged and is available at

the destination point. All the required computations are then

performed, and information about new locations of the sensors

and transferring route is shared between all sensors in this

cycle.

ii) [tj + δt1, tj + δt2]: In this cycle, the values obtained in the

previous cycle are used to properly place the sensors in the

field (this is the only cycle in which the sensors move).

iii) [tj + δt2, tj+1]: In this cycle, the objective is to maintain

connectivity and send information from the target to destina-

tion point. Therefore, the target has to be in the sensing range

of the monitoring sensor.

A sufficient condition is given next, which guarantees the

target remains in the sensing range of the monitoring sensor.

Assume the target is detected by the monitoring sensor at time

tj , and let the target position at times tj and tj+1 be denoted by

PT (tj) and PT (tj+1), respectively. Moreover, let the position

of the monitoring sensor be denoted by PM (tj) and PM (tj+1)
in the first and third execution cycles, respectively, and assume

Ω(tj) = maxtj≤t≤tj+1
‖PT (t)− PT (tj)‖. Then, the target

is guaranteed to stay within the sensing range in the last

cycle provided the sensing radius Rs of each sensor is chosen



less than its actual sensing range Rs,act. Furthermore, the

inequality

‖PT (t́)− PM (tj+1)‖≤ Rs,act (21)

Needs to be satisfied for all t́ ∈ [tj+δt2, tj+1]. Now, it results

from the triangle inequality that:

‖PT (t́)−PM (tj+1)‖≤ ‖PT (tj)−PM (tj+1)‖+‖PT (t́)−PT (tj)‖
(22)

On the other hand:

‖PT (tj)− PM (tj+1)‖≤ Rs (23)

‖PT (t́)− PT (tj)‖≤ Ω(tj) (24)

It follows from the above relations that (21) holds if:

Ω(tj) ≤ Rs,act −Rs (25)

Let the maximum speed of the target in the time interval

[tj , tj+1] be denoted by v(tj). One can verify that (25) holds

if:

∆Tv(tj) ≤ Rs,act −Rs (26)

It is to be noted that in order for the condition in (26) to be

satisfied for a faster target, Rs (which is a design parameter)

should be sufficiently small. This, however, can reduce the

efficiency of the monitoring sensor.

Remark 9. It is worth mentioning that the proposed algorithm

is a greedy optimization approach, which provides a near-

optimal solution at each time step. Solving the problem

over multiple time steps is a very challenging problem,

and can be considered as a future work for a given target

movement model. Also, note that although the proposed

algorithm provides a near-optimal solution at each time

step independently, its performance is investigated over the

lifetime of the network (multiple time steps) in the next

section.

V. SIMULATION RESULTS

Example 1. Consider 20 identical sensors randomly de-

ployed in a 30m × 30m field. It is desired to monitor a moving

target and route its information to the destination point. Let

the field be represented by a 2D plane with the destination

point chosen as the origin. Suppose that the communication

and sensing radii of each sensor are 10m and 3m, respectively.

Let also the energy required for a sensor at point Pi to

communicate with another sensor at point Pj be equal to

ωc(Pi, Pj) = µ[d(Pi, Pj)]
λ, where λ is a given constant.

Furthermore, the energy required for a sensor at point Pi to

sense the target at PT is equal to ωs(PT , Pj) = ζ[d(PT , Pj)]
γ ,

for a given constant γ. Assume also that the energy a sensor

consumes to move from Pi to point Pj is equal to βd̄(Pi, Pj),
where d̄(Pi, Pj) is the smallest distance a sensor at Pi should

move to reach Pj , and β is a given constant. It is important

to note that in the presence of obstacles, d̄(Pi, Pj) is not

necessarily the Euclidean distance between Pi and Pj . Let

θ be chosen as 0.15, which yields k > 21.43 (according to

Theorem 3).

Remark 10. Note that the size of the field and the number

of sensors considered in the simulations here are within the

ranges used in the literature (e.g., see [38], [39], [40], [41],

[42]). In addition, the sensing and communication ranges

considered in this section are comparable with those con-

sidered in [43], [38] (6m and 20m, respectively), and other

sensor prototypes such as Smart Dust, CTOS dust, and Wins

(Rockwell) [44].

Partition the field into a 30 × 30 grid, and let the target

move either one meter forward/backward randomly along each

axis or stay still at each time step (the length of this time step

is assumed to be inversely proportional to the speed of the

target). Note that the target is assumed to stay in the field at

all times and if it reaches the boundary of the field, its direction

will change such that the boundary is not crossed. Let also the

system parameters be µ = 10−3, ζ = 10−3, β = 7.54, λ = 2,

and γ = 2. The candidate location of every sensor along with

the desired route is determined by using Algorithm 1.

Scenario 1:

In this scenario, it is assumed there is no obstacle in the

field. Figs. 7(a), (b), (c) demonstrate the route and candidate

locations of the sensors at three different time instants, using

the proposed algorithm. In each snapshot, the location of

the target and sensors as well as the shortest path in the

constructed energy consumption digraph are depicted. The

current location of the sensors are shown by asterisks, while

their calculated candidate locations to move to are depicted

by small circles. The location of the target is shown by a

square, and the shortest path is indicated by blue segments.

Furthermore, green lines show the movement of the sensors

from their current locations to the candidate points in case

they are required to move. Note that under the proposed

algorithm, the nearest sensors to the path nodes in the sense of

Euclidean distance are not necessarily assigned to those nodes

(see Fig. 7(a), (c)). Also, it can be observed from this figure

that the proposed algorithm does not necessarily provide the

shortest possible communication route. This is due to the fact

that the algorithm tends to employ those sensors that have

higher residual energies.

Remark 11. Simulation results show that for different network

setups with different number of sensors and specifications, in

most cases the shortest path in the proposed algorithm is either

a good path or a perfect path, which according to Theorem 3

is θ-optimal as well.

To show the effectiveness of the proposed technique, it is

now compared with the algorithm provided in [16], which

minimizes the overall energy consumption of a sensor network.

This algorithm is applied to the above network setup, and the

energy consumption of all sensors are depicted in Fig. 8 along

with those obtained by using the method developed in the

present work. This figure shows that the proposed algorithm

outperforms the one provided in [16] in terms of network
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Fig. 7: Three snapshots of the sensors and target in the first scenario of Example 1. Blue segments indicate the energy-efficient routes under the proposed
algorithm, while the green lines demonstrate the movement of the sensors from their current locations to the candidate points in case they are required to

move.
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Fig. 8: The energy of sensors during the operation of the network in the first scenario of Example 1, using: (a) the tracking algorithm of [16], and (b) the
proposed algorithm.

lifetime. More precisely, the algorithm in [16] iterates 459

times before the first sensor runs out of energy, while no sensor

dies before 1450th iteration under the proposed algorithm.

Note that since the algorithm introduced in the present work

takes the remaining energy of the sensors into consideration

(which means a sensor with more energy would be more likely

to transmit the information), the amount of energy of every

sensor is more or less the same throughout the operation of the

network. Furthermore, the tracking sensor in [16] can remain

unchanged for a relatively long period of time (specially if

the target moves slowly) but under the proposed algorithm

this sensor can change frequently if it depletes large amount

of energy abruptly in order to monitor the target.

Scenario 2:

Assume now that there are two obstacles in the field

described above. Using Algorithm 1, the results shown in

Fig. 9 are obtained, analogously to Fig. 7. To assess the

performance of the proposed technique in the presence of

obstacles, it will be compared with the algorithm in [17] which

minimizes the overall energy consumption of a sensor network

with obstacles. Figs. 10 (a) and (b) depict the remaining energy

of every sensor v.s. iteration number under the algorithm

given in [17] and the one provided in this work, respectively.

These figures show that the algorithm introduced in this work

increases the network lifetime by 69%. They also show that

the consumption of energy across the nodes is more balanced

under the proposed algorithm, which further demonstrates the

efficiency of the method.

Remark 12. It is important to note that if the target moves

smoothly in the field, then under the technique proposed in

[16] the tracking sensor does not change frequently, as it

continues to be the nearest sensor to the target. As a result,

the tracking sensor in [16] runs out of energy relatively fast.

However, since in the method proposed here the EC-nearest

sensor to the target is defined based on the residual energy

of sensors, the monitoring sensor can be changed in order to

prevent it from depleting its energy fast.

Scenario 3: In this last scenario, the same setup of Scenario

2 has been used with different types of obstacles to verify the

performance of the algorithm in this configuration. Fig. 11

shows three snapshots of the network, which demonstrate the

effectiveness of the proposed algorithm in tracking the target in

this case. As in the previous scenario, the proposed algorithm

is compared with the algorithm in [17] using simulation

results. Figs. 12 (a) and (b) show the remaining energy of
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Fig. 9: Three snapshots of the network configuration obtained by using the proposed technique in the second scenario of Example 1.
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Fig. 10: The energy of sensors during the operation of the network in the second scenario of Example 1, using: (a) the tracking algorithm of [17], and (b)
the proposed algorithm.

the sensors in both algorithms. It can be observed from these

figures that the proposed algorithm demonstrates superior

performance, as the balanced energy consumption increases

the lifetime of the network substantially.

Example 2. In this example, the proposed technique is

compared with the strategy given in [45], where a set of mobile

sensors operate collaboratively to transmit information from

multiple sources (whose locations are fixed) to a designated

sink. Also, the energy consumption of sensors in [45] is due

to both communication and movement. For this comparison,

12 sensors are considered with an initial energy of 800J

each, and all other parameters are assumed to be the same

as those in Scenario 1 of Example 1. It is worth mentioning

that to compare these two algorithms, it is required to solve

the problem using the method in [45], then after relocating

the sensors and calculating their residual energies and also

considering the new location of the target, the problem must

be solved using the same algorithm again (in other words, the

method in [45] is used to monitor a moving source or target).

Figs. 13(a) and (b) demonstrate the results obtained by using

the technique in [45] and the ones obtained by the proposed

strategy, respectively. These figures show that the proposed

method outperforms the one in [45] significantly in terms of

network lifetime (note that the iteration time intervals are the

same in both methods). In addition to the superiority of the

proposed method in terms of network lifetime, it also has the

following advantages compared to [45]:

i) In [45], it is assumed that the communication graph of

the network does not change if the sensors change their

locations. In fact, as stated in [45], this is an acceptable

assumption when the communication range of the sensors

is comparable to the field size. The method proposed in

the present work, on the other hand, tackles the problem

in the general form without making such an assumption.

ii) The execution time of the proposed method is less than

that in [45]. Note that the authors in [45] formulate an

optimization problem and solve it using a method which

includes two nested loops. As mentioned in [45], due to

these nested loops, the algorithm has a long execution

time. Note also that, this optimization problem must be

solved in every time step if the algorithm is to be used

for monitoring a moving target.

iii) The method proposed in this paper can find a near-

optimal solution in the presence of obstacles, while the

method in [45] is only for an obstacle-free environment.

VI. CONCLUSIONS

A novel technique is proposed to prolong the lifetime of

a mobile sensor network which is deployed to monitor a
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Fig. 11: Three snapshots of the network configuration obtained by using the proposed technique in the third scenario of Example 1.
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Fig. 12: The energy of sensors during the operation of the network in the third scenario of Example 1, using: (a) the tracking algorithm of [17], and (b) the
proposed algorithm.
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Fig. 13: The energy of sensors during the operation of the network in Example 2, using: (a) the method given in [45], and (b) the proposed algorithm.



moving target in a field with or without obstacles. A digraph is

constructed by mapping the field to a grid, where the vertices

of the digraph are the grid nodes, and its edges are weighted

based on the remaining energy of sensors. Using this digraph,

the lifetime maximization problem is addressed by solving a

sequence of shortest path problems. Simulations demonstrate

the effectiveness of the proposed strategy in finding best

location for the mobile sensors at different points in time,

as well as the best route to transmit the target information.

Adaptive sensing and communication range for each sensor

with regard to its remaining energy can have a significant

impact on the network lifetime, which is considered as a future

work. Also, solving the investigated problem over multiple

time-steps based on a realistic model for target motion can be

considered as a future work.
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